Teacher notes

Topic E

The HR diagram

(a) Identify (i) the main sequence, (ii) the region of red giants, (iii) the region of white dwarfs and (iv) the instability region.
(b) X and Y have the same luminosity even though X has a much larger temperature. Explain this observation.
(c) What is the ratio of radii $R_{\mathrm{Z}}: R_{\mathrm{X}}: R_{\mathrm{Y}}$ for Z and X and Y ?
(d) Describe and draw the evolutionary path of the Sun and of star X.
(e) Describe how star X and star Y maintain equilibrium.

Answers

(a)

IB Physics: K.A. Tsokos

(b) Z must have a much larger surface area.
(c) $\frac{\sigma 4 \pi R_{\mathrm{z}}^{2} \times 2500^{4}}{\sigma 4 \pi R_{\mathrm{x}}^{2} \times 20000^{4}}=1 \Rightarrow \frac{R_{\mathrm{z}}}{R_{\mathrm{x}}}=\left(\frac{20000}{2500}\right)^{2}=64 ; \frac{\sigma 4 \pi R_{\mathrm{x}}^{2} \times 20000^{4}}{\sigma 4 \pi R_{\mathrm{y}}^{2} \times 20000^{4}}=10^{5} \Rightarrow \frac{R_{\mathrm{x}}}{R_{\mathrm{Y}}}=\sqrt{10^{5}} \approx 320$. Hence $R_{\mathrm{Z}}: R_{\mathrm{x}}: R_{\mathrm{Y}} \approx 20500: 320: 1$
(d) See diagram.
(e) X: pressure (gas pressure and radiation pressure) created by the energy produced in nuclear fusion

Y: electron degeneracy pressure.

Why are lines of constant stellar radius straight lines on the HR diagram?

Since $L=\sigma 4 \pi R^{2} T^{4}$ it follows that $\log \frac{L}{L_{\odot}}=\log \left(\frac{R^{2}}{R_{\odot}^{2}} \frac{T^{4}}{T_{\odot}^{4}}\right)=2 \log \left(\frac{R}{R_{\odot}}\right)+4 \log \left(\frac{T}{T_{\odot}}\right)$. We take logs because the HR diagram is a plot of $\log L$ versus $\log T$. For $R=$ constant,
$\log \frac{L}{L_{\odot}}=c+4 \log \left(\frac{T}{T_{\odot}}\right)$
This would be a straight line with positive slope on the HR diagram. But T is increasing to the left so this makes the straight line have a negative gradient. The gradient is -4 .

For the line through the Sun $c=0$.

We can now ask for: the luminosity of Q, the temperature of R and the radius of P. (This is NOT something that could be asked on an IB exam but it could be useful to someone doing an IA or EE.)

For Q:
$\log \frac{L}{L_{\odot}}=2 \log (100)+4 \log \left(\frac{2500}{5780}\right)=2.544$. Hence $L=10^{2.544}=3.5 \times 10^{2} L_{\odot}$.
For R:
$\log 10^{-2}=2 \log \left(10^{-2}\right)+4 \log \left(\frac{T}{5780}\right) \Rightarrow \log \left(\frac{T}{5780}\right)=\frac{1}{2}$. Hence $\frac{T}{5780}=10^{\frac{1}{2}} \Rightarrow T=1.8 \times 10^{4} \mathrm{~K}$.

For P:
$\log 10=2 \log \left(\frac{R}{R_{\odot}}\right)+4 \log \left(\frac{20000}{5780}\right) \Rightarrow \log \left(\frac{R}{R_{\odot}}\right)=-0.578$. Hence $\frac{R}{R_{\odot}}=10^{-0.587} \Rightarrow R=0.26 R_{\odot}$.

These results are consistent with the diagram.

